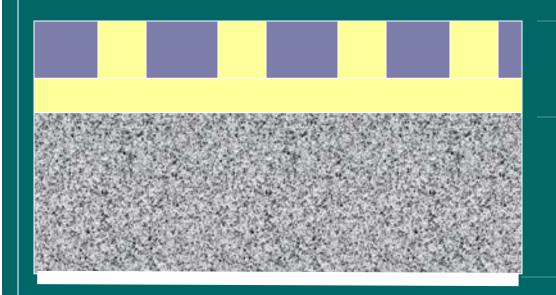
Study on the Surface Infiltration Rates of Permeable Pavements

Eban Z. Bean, M.S. Candidate, El David Bidelspach, PE William F. Hunt, Ph.D., PE

Objectives

- How well do Permeable Pavements perform?
- Does clogging hinder SURFACE infiltration?
- Does maintenance improve infiltration?
 - If so, by how much?
- Is there a Water Quality benefit from Permeable Pavements?

Impervious Surfaces


- Increased Total Volume of Runoff
- Increased Peak Runoff
- Downstream Erosion
- Decreased Time of Concentration
- Reduce Groundwater Recharge
- Pollutant Transport
- Water Quality
- Thermal Impacts

Permeable Pavement

- Asphalt or Concrete alternative--some cases
 - Modified Sand Filter
 - Allows infiltration
 - Filters Stormwater
 - Parking Lots
 - Driveways
 - Walkways & Bike Paths

Permeable Pavement

Pavement Layer

Water Storage

Geo-Fabric

In-Situ Soil

Permeable Pavement

Not yet a Stormwater BMP accepted by the State of North Carolina's DWQ

WHY?

Clogging

- Seals off the surface
 - Sediment deposition
 - Vehicle Traffic
 - Runoff onto surface
 - Bigger problem in clay soils
 - Automotive fluids work like coagulants

UN-Clogging

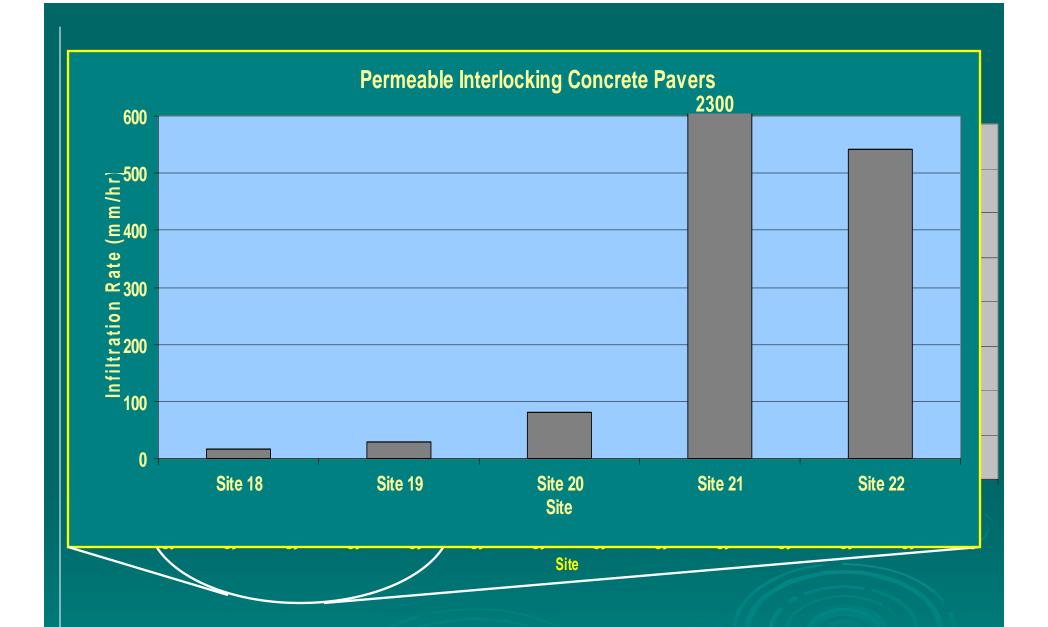
- Remove clogging material
 - Vacuum Truck
 - Street sweeper
 - Scarify surface
 - Pressure Washing?

Infiltration Rates

- > 48 sites
 - NC, MD, DE, VA
 - Concrete Grid Pavers (17)
 - Permeable Interlocking Concrete Pavers (14)
 - Porous Concrete (11)
 - Porous Asphalt (5)
 - Plastic Turf
 Reinforcing Grids (1)

Procedure

ModifiedASTM D-3385Procedure


 Double Ring Infiltrometer

Procedure

- Surface Inundation
 Test
 - >30 in./hr
 - Single Ring Test
 - Not as accurate as Double Ring Infiltrometer Test
 - Almost all PICP sites
 - Most PC sites

Data

- Surface Infiltration Rate:
 - Slope of water level vs. time
 - Surface Infiltration
 Rate average of three test runs
 - Existing
 - Maintained

Biological and Agricultural Engineering

NC STATE UNIVERSITY

Location, Location, Location...


PICP Exposed to Fines:

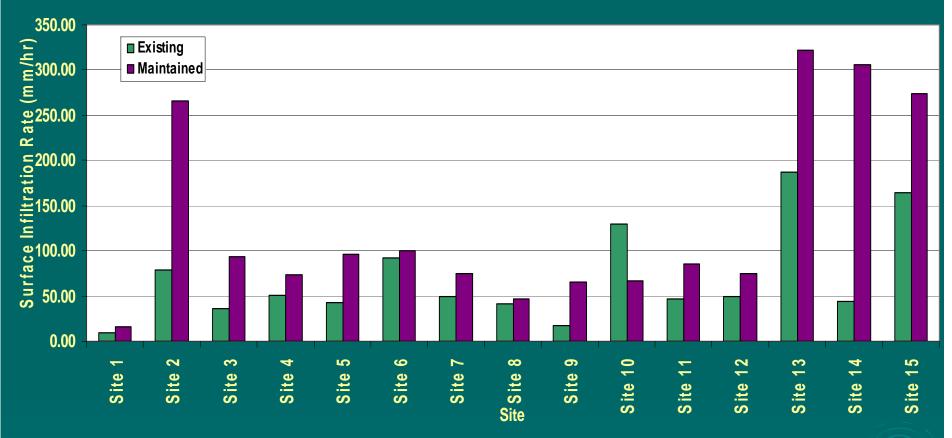
K = 80 mm/hr(3.1 in./hr)

PICP not Exposed to Fines:

K = 20000 mm/hr (800 in./hr)

99% confidence statistically significant difference

Porous Concrete


- PC Exposed to Fines:
 K = 130 mm/hr
 (5.2 in./hr)
- PC not Exposed to Fines:
 - K = 40000 mm/hr(2000 in./hr)
- 99% confidence statistically significant difference

Maintenance

- Remove top 12 19 mm (0.5-0.75 in.) of material
 - Street sweeper
 - Gerrits & James (2002)
- Repeat Test

14/15 Sites improved surface infiltration after maintenance

Biological and Agricultura

NC STATE UNIVERSITY

Maintenance

- Existing CGP K = 49 mm/hr (1.9 in./hr)
- Maintained CGP
 K = 86 mm/hr
 (3.4 in./hr)
 66% increase
- 97% confidence statistically significant difference

CGP vs. PTRG (Kinston)

- > Similarly Used
- > Installed at the Same Time
- > CGP > PTRG w/ Grass

Results

- Location of PICP
 - Significantly (p<0.01) higher infiltration rates away from fines
- > Location of PC
 - Sites with fines had infiltration rates significantly (p<0.01) lower than areas free of fines

Results

- CGP & Maintenance
 - Maintenance significantly improved surface infiltration rate (p<0.03)
- CGP vs. PTRG
 - PTRG had higher infiltration rates with grass
 - higher infiltration rates than PTRG even with grass
- 90% of sites tested had surface infiltration rates of >29 mm/hr (~1 in./hr)

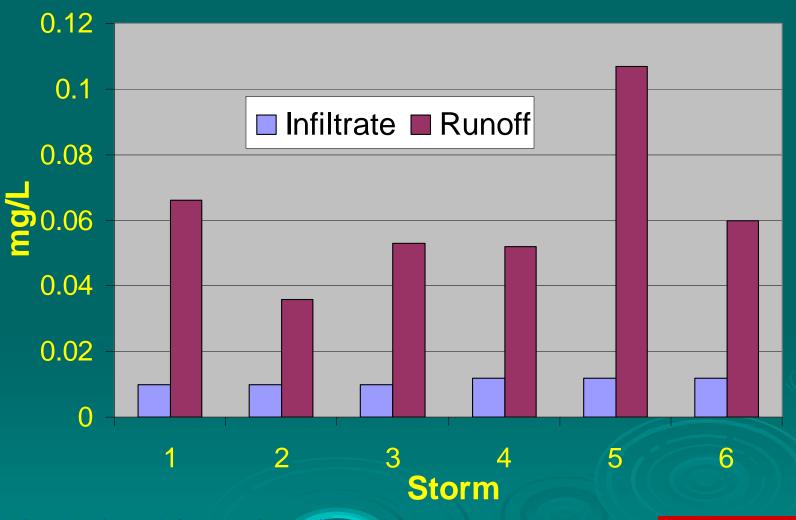
Design Implications

CGP sites should be maintained on a regular interval

PICP and PC sites should be constructed in areas free of fines

Water Quality Monitoring Sites

- > Three PICP Sites (NC):
 - Goldsboro, Swansboro, and Cary
- Infiltrate & Runoff Concentration


Pollutant Removal

Goldsboro Monitoring Site

- Compare Asphalt Runoff to Infiltrate
 - Metals
 - Phosphorus
 - Nitrogen
 - Total
 Suspended
 Solids

Summer '03- Fall '03 [Zn]

Biological and Agricultur

NC STATE UNIVERSITY

Monitoring Sites

- Swansboro Public Parking
 - Compare Water Quality of Runoff and Infiltrate of PICP Lot
 - Runoff volume attenuation
- Raleigh Private Driveway
 - Compare Water Quality of Rainfall and Infiltrate (N & P)
 - Runoff volume attenuation

Thank You

- > ICPI
- > NCDENR/US EPA 319
- Brandon Eckrote
- Zach Woodward
- Dave Bidelspach
- > William Hunt, Ph.D.

Thank You

> Email: eban bean@ncsu.edu

- Permeable Pavement Website:
 - Current Research Reports and Papers